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Abstract 

We consider unbiased estimation of σ  in a ( )2, σµN  population. Traditional 
unbiased estimators consist of appropriate multiples of both the sample standard 

deviation S, that is, ( )1T  and Gini’s mean difference (GMD), that is, ( ).2T  Both 
( ) ( )21 , TT  depend upon U-statistics associated with symmetric kernels of degree 

two. In this paper, we develop a new approach of constructing higher-order 

unbiased U-statistics ( ) ( ),, 43 TT  and ( )5T  for σ  based upon symmetric kernels 
with degree three, four, and four, respectively. From this investigation, we find 

that the new unbiased estimators ( ) ( ) ( )543 and,, TTT  for ;σ  (i) go practically 

head-to-head with the existing estimators ( )1T  and ( ),2T  (ii) ( )4T  beats ( ),2T  

and (iii) ( )3T  very nearly beats ( ),2T  whether n is small or moderately large. In 
other words, it is our belief that this new approach appears very promising. 
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1. Introduction 

The notion of variation has traditionally belonged to the core of 
statistics. One measure of variation that clearly stands out is obviously 
the sample variance or a standard deviation, which estimates a population 

variance 2σ  or a standard deviation .σ  

In this paper, we focus on unbiased estimation of the standard 
deviation σ  in a normal population. Suppose that nXX ,,1 …  form a 

random sample, that is, these are independent and identically distributed 

(i.i.d.) random variables following a ( )2, σµN  distribution. We denote the 

sample mean, ,1
1

i
n
i XnX ∑ =

−=  and the sample variance, 

( ) ( ) .2for,1 2
1

12 ≥−−= ∑ =
− nXXnS i

n

i
 

We suppose that .0 ∞<σ<  

From the expression of ,2S  it is clear that it compares each 

observation with the sample average. However, one can equivalently see 
an alternative expression of the sample variance as follows: 
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From (1.1), it becomes abundantly clear that every iX  is compared with 

every other jX  in defining .2S  

The representation in (1.1) is called a U-statistic that belongs to a 

class of unbiased estimators (of 2σ ), which was introduced by Hoeffding 
[10]. The U-statistic (1.1) is associated with a symmetric kernel, 

( )21, xxg  ( ) .2
1 2

21 xx −=  Hoeffding’s U-statistic is generally defined in 

(2.1) that is based on a suitable symmetric kernel of degree ( ).nm <  
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1.1. A brief literature review 

The literature on U-statistics is vast as well as rich. A long journey of 
the theory of U-statistics began with the pioneering contributions of 
Hoeffding [10, 11]. Numerous books devoted to topics on nonparametric 
statistics include some material on U-statistics. We may cite, for example, 
Puri and Sen [20], Sen [21], Mukhopadhyay and Solanky [17], Jureckova 
and Sen [13], Ghosh et al. [6], Hettmansperger and McKean [9], and 
Hollander and Wolfe [12]. One will also find a number of books dedicated 
exclusively to theory and practice of U-statistics including Lee [16], 
Kowalski and Tu [15], and Korolyuk and Borovskich [14]. 

In order to estimate σ  unbiasedly, the minimum variance unbiased 
estimator (MVUE) comes to our minds first. It is a suitable multiple of S, 

which is denoted by ( )1T  in (2.4). There is another widely applied unbiased 

estimator, ( ),2T  of σ  defined in (2.5), which is a suitable multiple of 

Gini’s mean difference (GMD). GMD was originally developed by Gini    
[7, 8]. Nair [19] constitutes one of the early contributions, which discussed 
the role of GMD in estimation theory for a normal distribution as well as 
some selected non-normal distributions. Yitzhaki [24] had dealt with 
GMD in estimating a standard deviation in a non-normal distribution. 
Both Downton [5] and D’Agostino [4] worked with an ordered version of 
GMD and came up with estimates of σ  in a normal distribution. 

Since the pioneering work of Gini, many statistical scientists, 
economists, and others were also drawn into numerous interpretations 
and generalizations driven by GMD in various directions. We may cite a 
selection of recent contributions by Sen [22], Sen [23], and Arnold [2, 3] 
among others. 

1.2. An outline of this paper 

In this paper, we introduce a basic methodology for constructing 
unbiased estimators of σ  by U-statistics with kernels of degree 2>m  in 
a normal distribution. Section 2 begins with some preliminaries, 
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illustrations, and motivations behind our approach by constructing new 

higher-order unbiased U-statistics ( ) ( ),, 43 TT  and ( )5T  for σ  with degree 

three and four displayed by (2.7), (2.8), and (2.10), respectively. For 
brevity, we do not include illustrations with U-statistics of degree beyond 
four. 

Both ( )1T  from (2.4) and ( )2T  from (2.5) clearly rely upon kernels of 
degree two, and they stand as two heavily studied unbiased estimators of 

.σ  We have decided to compare ( ) ( ) ( )543 ,, TTT  with ( )1T  and ( )2T  with 

the focal point of comparison being ( )2T  because we do not expect to beat 
( ),1T  the MVUE for .σ  We first compare performances of all five 

estimators by using simulations and these preliminary findings are 

summarized in Tables 1 and 2. It may not be a bad idea to compare ( ),3T  
( ) ( )54 and, TT  with other existing unbiased estimators of ,σ  but we 

refrain from doing so in order to keep the length of this introductory 
discourse on our new approach within reason. 

The exact variances of ( ) ( ),, 21 TT  and ( )3T  are then laid out in                

(3.1)-(3.3) of Section 3 followed by the comparisons of their efficiencies 

(Subsection 3.1). The exact variances of ( )4T  and ( )5T  are hard to 

evaluate. Hence, large-sample approximations of the variances of ( )1T  

through ( )5T  are then summarized in Subsection 3.2. Their proofs are 
rather involved and hence we have provided some of the key steps of all 
derivations in Subsections 4.1-4.4. Some crucial intermediate steps are 
put together as Lemmas 4.1-4.6 in Subsection 4.5. 

In summary, it is clear from our investigation that three new 

unbiased estimators ( ) ( ) ( )543 and,, TTT  for ;σ  (i) go practically head-to-

head with existing estimators ( )1T  and ( ),2T  (ii) ( )4T  beats ( ),2T  and 

(iii) ( )3T  very nearly beats ( ),2T  whether n is small or moderately large. 



ESTIMATING A STANDARD DEVIATION  97

2. Some Preliminaries and Illustrations 

Hoeffding’s [10] U-statistic corresponding to a functional ( )Fθ≡θ  is 

customarily written as 

( ) ( )( ),,,, 21
,

1

miii
m

mn

m
n XXXg

m
n
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−


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
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=≡   (2.1) 

where ∑
mn,

 denotes the summation over all possible combinations of 

indices miii ,,, 21 …  such that .1 21 niii m ≤<<<≤ …  Here, ( )( ).mg  is 

a symmetric kernel of degree m such that [ ( )( )] ( ),,,1 FXXgE m
m

F θ=…  

.mn >  We will use a more descriptive notation shortly to streamline a 

series of different unbiased estimators of σ  that we propose. 

Let ( )1,2
1,1g  denote the kernel ( )22

1
ji xx −  of degree 2 associated with 

.2S  In other words, we will streamline our notation by expressing 

( ) ( )( ),,
2 21
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1,2
1,1
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where ( )1,2
1,1,nU  happens to be the U-statistic from (2.1) with .2=m  In 

general, we will denote a U-statistic ( )pm
lknU ,

,,  corresponding to a kernel 

( )( ).,,1
,

, m
pm

lk xxg …  The “p” in the superscript will indicate that, it is the 

p-th proposed estimator of σ  of a particular kind. The “1,1” in the 

subscript of U and g will indicate that we are forming a U-statistic by 
comparing each observation with every other observation. 

In general, “k, l” in the subscript will indicate that we may compare 
the average of each subgroup of size k with the average of each subgroup 
of size l, where k, l are fixed, .mlk =+  For example, with ,4=m  we 
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may have either ,3,1 == lk  equivalently, ,1,3 == lk  or ,2== lk  

which would lead to two choices of unbiased estimators of θ  constructed 
our way. These will correspond to ,2,1=p  respectively. 

Now, since ( ) ,~1 2
1

22
−χσ− nSn  it is easy to see that 

[ ] .2,2
1

21
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1
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Thus, using our scheme of notation, we will write 

( ) ( ) ,11,2
1,1,

1 SaTT nn
−=≡   (2.4) 

for the 1st unbiased estimator of ,σ  where the U-statistic corresponding 

to 2σ  employed in the basic construction of 2S  happens to be ( )1,2
1,1,nU   

associated with the kernel ( )( )., 21
1,2

1,1 xxg  However, we note that ( )1,2
1,1,nT  is 

not a U-statistic in itself, but it is the minimum variance unbiased 

estimator (MVUE) of .σ  

Nair [19] had argued that an unbiased estimator constructed from 

Gini’s mean difference, namely, ( )2,2
1,1,nU  corresponding to the kernel ( )2,2

1,1g  

( ) ,2, 2121 xxxx −π=  may be used for estimating the population 

standard deviation σ  although, it is slightly less reliable than the 

estimator ( )1,2
1,1,nT  from (2.4) in the case of a normal distribution. He 

proposed estimating σ  with 

( ) ( ) ( ) ( )( ).,
2 21

21
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2.1. Motivation behind our construction 

In view of the constructions seen in (2.2) and (2.5), let us first 
motivate a kernel of degree ,3=m  for unbiasedly estimating .σ  In order 

to come up with an unbiased estimator of ,σ  why do we not begin by 

comparing ( )ji XX +2
1  with kX  for each triplet ?1 nkji ≤<<≤  We 

begin with a basic kernel ( ) ,2
1

kji XXX −+  symmetrize it and then 

make it unbiased for .σ  This leads to the following kernel: 

( ) ( )321
1,3

1,2, ,, xxxgn  

{ ( ) ( ) ( ) }.2
1

2
1

2
1

33 123231321 xxxxxxxxx −++−++−+π=  (2.6) 

This kernel leads to the following U-statistic of degree 3: 
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which estimates σ  unbiasedly for .3≥n  

We may additionally propose the following two U-statistics of degree 4. 
Let us define 

( ) ( ) ( ) ( ) ( ),,,,
4 4321
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associated with the kernel 
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( ) ( ) },2
1
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associated with the kernel 

( ) ( )4321
2,4
1,3, ,,, xxxxgn  

{ ( ) ( ) 34214321 3
1

3
1

28
3 xxxxxxxx −+++−++π=  

( ) ( ) },3
1

3
1

14322431 xxxxxxxx −+++−+++  (2.11) 

for .4≥n  

The two U-statistics ( )1,4
2,2,nT  from (2.8) and ( )2,4

1,3,nT  from (2.10) both 

have degree 4 and both estimate σ  unbiasedly for .4≥n  For brevity, we 
leave out the details for constructing unbiased estimators of ,σ  more 

generally, with U-statistics of degree higher than four. 

Before we get to the topic of variance calculations for ( ) ( ),, 2,2
1,1,

1,2
1,1, nn TT  

( ) ( ) ,, 1,4
2,2,

1,3
1,2, nn TT  and ( )2,4

1,3,nT  from (2.4), (2.5), (2.7), (2.8), and (2.10), 

respectively, we first estimated their means and standard deviations 
based on 5000 replications via computer simulations under each 
configuration of the parent populations. We fixed n = 15, 25, 30, 45, 60, 
and 70 and considered random samples from the parent populations   
N(5, 100), N(5, 400), and N(5, 900). Tables 1 and 2, respectively, 
summarize our findings in the case of small sample sizes, namely, when n 
= 15, 25, 30, 45 and for medium sample sizes, namely, when n = 60, 70. 
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In the case of a specific parent population and sample size n, we 
obtained the values of all five ST ’  which gave rise to the corresponding 

observed t-values from the same set of data during the r-th replication,             
r = 1, ..., 5000. From such 5000 observed values, we obtained the sample 

mean values, t  and their estimated standard errors, ( ).ts  In Tables 1 

and 2, we show t  and ( )ts  values under each estimator. 

From Tables 1 and 2, it appears empirically that [ ( ) ] VarVar 4 <T  

[ ( ) ] [ ( ) ] [ ( ) ]523 VarVar TTT <<  for sample sizes 15, 25, 30, 45, and 

[ ( ) ] [ ( ) ] [ ( ) ] [ ( ) ]5324 VarVarVarVar TTTT <<<  for sample sizes 60, 70 

with few exceptions. Thus, empirically ( )4T  appears to be the best 

estimator among ( )2T  through ( ).5T  In fact, the asymptotic variance of 
( )4T  is also the smallest among the asymptotic variances of ( )2T  through 
( ).5T  

In summary, from these tables, it is abundantly clear to us that the 

three new unbiased estimators ( ) ( ) ( )543 and,, TTT  for ;σ  (i) go 

practically head-to-head with existing estimators ( )1T  and ( ),2T  (ii) ( )4T  

beats ( ),2T  and (iii) ( )3T  very nearly beats ( ),2T  whether n is small or 

moderately large. 
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Table 1. Simulated estimates ( )t  of standard deviation and their 

corresponding standard error ( )ts  

 ( )1t  ( )2t  ( )3t  ( )4t  ( )5t  

 
n 

( ( ) )1ts  ( ( ) )2ts  ( ( ) )3ts  ( ( ) )4ts  ( ( ) )5ts  

N(5, 100) 15 10.00007 9.99426 9.99462 9.99964 9.99312 

  1.92789 1.94194 1.93883 1.92751 1.94833 

 25 9.96733 9.96803 9.96752 9.96675 9.96800 

  1.45405 1.47153 1.47107 1.45638 1.47970 

 30 10.00541 9.99965 9.99955 10.00317 9.99815 

  1.32520 1.33483 1.33312 1.32488 1.33890 

 45 9.99183 9.99473 9.99487 9.99295 9.99537 

  1.08470 1.09513 1.09493 1.08657 1.10074 

N(5, 400) 15 20.01364 20.00570 20.00462 20.01027 20.00137 

  3.77603 3.80948 3.80431 3.77453 3.82597 

 25 20.02791 20.02587 20.02529 20.02726 20.02375 

  2.90472 2.93433 2.93066 2.90614 2.94621 

 30 20.04563 20.04681 20.04494 20.04653 20.04365 

  2.61868 2.64368 2.64282 2.62143 2.65648 

 45 20.04855 20.04327 20.04279 20.04632 20.04254 

  2.16611 2.19184 2.18960 2.17070 2.20495 

N(5, 900) 15 29.97534 29.98079 29.98705 29.97867 29.98913 

  5.70799 5.77802 5.77015 5.71273 5.80529 

 25 30.02527 30.02623 30.02265 30.02438 30.02220 

  4.43593 4.47374 4.47062 4.43833 4.49376 

 30 29.96168 29.95199 29.95250 29.95972 29.94997 

  4.00480 4.04125 4.04104 4.00851 4.06237 

 45 30.02106 30.02924 30.02785 30.02461 30.02856 

  3.22111 3.26143 3.26199 3.23030 3.28064 
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Table 2. Simulated estimates ( )t  of standard deviation and their 

corresponding standard error ( )ts  

 ( )1t  ( )2t  ( )3t  ( )4t  ( )5t  

 
n 

( ( ) )1ts  ( ( ) )2ts  ( ( ) )3ts  ( ( ) )4ts  ( ( ) )5ts  

N(5, 100) 60 9.99572 9.99712 9.99775 9.99620 9.99844 

  0.93330 0.94144 0.94150 0.93405 0.94623 

 70 9.99685 9.99688 9.99721 9.99684 9.99747 

  0.84230 0.84940 0.84981 0.84292 0.85414 

N(5, 400) 60 20.00012 19.99386 19.99382 19.99774 19.99232 

  1.81046 1.82902 1.82886 1.81339 1.83817 

 70 19.99676 19.99319 19.99331 19.99494 19.99295 

  1.71972 1.73420 1.73461 1.72176 1.74287 

N(5, 900) 60 30.05758 30.05713 30.05611 30.05751 30.05457 

  2.75006 2.79284 2.79353 2.76022 2.81196 

 70 30.02919 30.03386 30.03391 30.03081 30.03533 

  2.51252 2.54109 2.54258 2.51822 2.55735 

3. Exact Variances of ( ) ( ) ( )321 ,, TTT  and also  
Large-Sample Approximations of  

the Variances of ( )1T  Through ( )5T  

One can easily verify that the exact variance of the unbiased form of 
S, namely, ( )1T  from (2.4), is given by 

[ ( ) ] ( ) { } .12
1

22with1Var 1221 −− −




 −Γ





Γ=σ−= nnnaaT nn  (3.1) 

Nair [19] had shown that the variance of ( )2T  defined in (2.5), is given by 

[ ( ) ] ( ) { ( ) ( ) ( )} .322322131
1Var 22 σ−−−++π
−

= nnnnnT  (3.2) 

The exact variance of ( ),3T  defined in (2.7), is given by 

[ ( ) ] ( ) ( ) ( ) ( ) ,33
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where we denote 

 ( ) [ 

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
++


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
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3
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( ) .1
3

1tan3
1

3
1

6
13

3 



 −






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A proof of (3.3) is given in the subsection 4. 

3.1. Comparing the exact variances 

In Figures 1(a) and 1(b), we have presented the curves corresponding 
to [ ( ) ] [ ( ) ]23 VarVar TT −  vs. n (solid), [ ( ) ] [ ( ) ]12 VarVar TT −  vs. n (dashed), 

and [ ( ) ] [ ( ) ]13 VarVar TT −  vs. n (dotted) when n = 10(1)60 and n = 
40(1)100, respectively. In Figures 2(a) and 2(b), we have additionally 
presented the curves corresponding to the efficiency of each estimator 
relative to another vs. n when n = 10(1)60 and n = 40(1)100, respectively. 
The efficiency of an estimator ( )iT  relative to another estimator ( )jT  is 
traditionally quantified by 

Efficiency, 
[ ( ) ]

[ ( ) ]
.

Var

Var
Eff i

j

ij
T

T
=   (3.7) 

Figures 2(a) and 2(b) plot the curves 23Eff  (solid), 12Eff  (dashed), and 

13Eff  (dotted) vs. n when n = 10(1)60 and n = 40(1)100, respectively. We 
have deliberately kept a small overlap of n-values when we move from 
Figure (a) to Figure (b) in order to be able to pick up any visible 
differences when n = 40(1)60. 
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(a) 

 
(b) 

Figure 1. Differences of variances from (3.1)-(3.3): [ ( ) ] [ ( ) ]23 VarVar TT −  

(solid), [ ( ) ] [ ( ) ]12 VarVar TT −  (dashed), and [ ( ) ] [ ( ) ]13 VarVar TT −  (dotted) 
vs. n; (a) n = 10(1)60 and (b) n = 40(1)100. 
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(a) 

 
(b) 

Figure 2. Efficiencies from (3.7): 23Eff  (solid), 12Eff  (dashed), and 13Eff  
(dotted) vs. n; (a) n = 10(1)60 and (b) n = 40(1)100. 
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From the Figures 1(a), 1(b), 2(a), and 2(b), we note that for a 

reasonably small sample size (that is, when 55≤n ), the estimator ( )3T  

is more efficient than ( ).2T  For a sample of size exceeding 55, the 

estimator ( )2T  is more efficient than ( ).3T  One may note that when 
( )2,3 Tn =  and ( )3T  have equal variances. 

Clearly, the unbiased version of the sample standard deviation, 

namely, ( ),1T  is more efficient than either ( )2T  or ( )3T  whatever is the 

sample size. Thus, if we use ( )3T  in place of ( )2T  (when 55>n ) or 

instead of ( )1T  (whatever be n) for estimating ,σ  then one will obviously 

encounter some loss of information. From Figures 2(a) and 2(b), we 

surmise that the loss of efficiency, while using ( )3T  in place of ( )2T  when 

55>n  will not exceed 3105.1 −×  whatever may be n, whereas the loss of 

efficiency for using ( )3T  instead of ( )1T  will not exceed 0.025 whatever is 

n. Thus, one may not lose much information, if one uses ( )3T  instead of 
( )2T  or ( ).1T  

3.2. Large-sample comparisons of the variances of estimators 

In the Section 4, we have provided large-sample approximations for 

the variances of the estimators ( )1T  through ( ).5T  In what follows, we 

summarize these large-sample approximations of [ ( ) ]1Var T  through 

[ ( ) ].Var 5T  

[ ( ) ] [ ( ) ] [ ( ) ] ;5118784.0Var;5112992.0Var;5.0Var
2

3
2

2
2

1
nTnTnT σ≈σ≈σ≈  

[ ( ) ] [ ( ) ] .5172479.0Varand;5026544.0Var
2

5
2

4
nTnT σ≈σ≈  (3.8) 

As expected, ( )1T  is most efficient among our five competitive 

unbiased estimators of .σ  But, for large sample sizes, ( )2T  through ( )4T  
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are not terribly worse than ( ),1T  whereas (i) ( )4T  clearly stands out 

especially since it can beat ( ),2T  and (ii) ( )3T  performs nearly head-to-

head with ( ).2T  

4. Proofs and Derivations 

In this section, we provide some of the major derivations. In 
Subsections 4.1-4.4, we have repeatedly utilized Lemmas 4.1-4.6, which 
have been kept out of the way by combining all of them as well as their 
proofs in Subsection 4.5. 

4.1. Large-sample variance of ( )1T  from (3.8) 

The exact expression of the variance of ( )1T  in (3.1) is easy to verify. 
From Abramowitz and Stegun ([1], 6.1.47), first we know that 

( )
( ) ( ) ( ) ( ).012

11~ 2−− +−+−+
+Γ
+Γ zbabazbz

azz ab   (4.1) 

Now, we rewrite [ ( ) ]1Var T  from (3.1) as 

( ) 2
22

22 122
1

2
11 σ









−




 





Γ





 





 −Γ−=σ−− nnnan  

( ),02
1 22 −+σ= nn  

in view of (4.1). 

4.2. Exact variance of ( ):3T  Proof of (3.3) 

Let us first consider a general U-statistic U defined by (2.1). Then, 
using Hoeffding’s [10] projection method, the variance of U will be given 
by 

[ ] ( ) ( )( ) ,Var
1

1
c

mn
cm

m
c

m

c

n
mU ζ= −

−
=

− ∑  
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where 

( ) ( )[ ] ,,,,, 22
111 θ−===ζ ccm iiiiii

m
c xXxXXXgE ……  (4.2) 

.,,2,1for mc …=  

Next, in view of (2.7), we have 

( ) ( )




−
+

+−
+π= ∑

≤<<≤

−
j

ik
k

ji

nkji

n XXXX
XX

T 2227
1

1
3

3  

.2 



−
+

+ i
kj X

XX
 (4.3) 

So, we let ,2,2 2
31

23
21

1 XXXWXXXW −
+

=−
+

=  and 2
32

3
XXW +

=  

1X−  with ,2
3,0~ 2 





 σNWi  for .3,2,1=i  But, we know the following 

conditional distributions: 

.4
5,2~and4

5,2~ 23
31

21
11 






 σ

µ−






 σ

µ− XNXWXNXW  (4.4) 

Thus, utilizing (4.4), we can claim 

[ ] ,2
1

5
1

10
1exp2

5 2
111211









−





Φ+





−

π
σ=== ZZZZXWEII  

[ ] ( ) ( ) ,22exp1 2
1313 






 −Φ+−

π
σ== ZZZZXWEI  (4.5) 

where  ( ) .1 σµ−= XZ   

Also, we know the following conditional distributions: 

.4
1,2

2~,and,2~, 231
311

221
211 






 σ

µ+−






 σµ−

+ XXNXXWXXNXXW  

(4.6) 

Utilizing (4.6), we obtain 
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[ ]21121 , XXWEI =  

,
2

2,
22

24exp2 21
1

11
1

2
1

σ
µ−+

=












−





Φ+










−

π
σ=

XXZZZZZ  

[ ]21222 , XXWEI =  

( ) ,
5

2,2
5552

5exp
2
1 21

2
2

22
2
2

σ
µ+−

=












−Φ+









−

π
σ=

XXZZZZZ  

[ ]21323 , XXWEI =   

( ) .
5
2,2

5552
5exp

2
1 12

3
3

33
2
3

σ
µ+−

=












−Φ+









−

π
σ=

XXZZZZZ  

(4.7) 

We also observe that [ ] [ ] [ ]1211
2
12

2
11 IIEIEIE ==  and we can 

evaluate this term as follows: 

( )














Φ−















Φ




++

















−

π
σ

554
1

5exp2
5 2222

2
2 ZZEZZEZEZE  




















Φ








−

π
+

















−

π
−

510exp2
5210exp2

5 22 ZZZEZZE  









π

+−







π

+






π
+++

π
σ= −

76
55

2
1

76
5

6
1sin2

1
4
1

4
1

7
5

2
5 12  

.6
1sin2

1
2
35 12
















π
+

π
σ= −  (4.8) 

The terms such as 

( )( ) ( )( ) ( ) ( ){ }510expand,5,5 2222 ZZZEZZEZZE Φ−ΦΦ  

involved in (4.8) were evaluated by appealing to Lemmas 4.6, 4.2, and 4.5. 
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Next, we turn to evaluate [ ]2
13IE  and [ ] ( [ ]).13121311 IIEIIE =  We 

have 

[ ] ( )( ) ( )( ) ( )( )
 Φ−Φ+−
π

σ= ZZEZZEZEIE 24242exp1 222222
13  

( ) ( )( ) ( ) ( )( )
Φ−

π
+−

π
−+ ZZZEZZEZE 2exp4exp2 222  







ππ
+−








π
+







π
++

π
σ= −

53
1.41

53
2

3
2sin2

1
4
14

5
1 12  

,3
2sin25 12
















π
+

π
σ= −  (4.9) 

and 

[ ] [ ]13121311 IIEIIE =  

 ( )









 Φ






Φ+
















−

π
σ= ZZZEZE 2

5
210

11exp2
51 2

2
2  

( ( )) ( )22
2

2
1exp

2
1

10exp2
5 ZEZZEZZE +−

π
−
















−

π
−  

( ) 













Φ−








Φ







−

π
+

5
210exp2

52 2
2 ZZEZZZE  

( ) ( ( ))



Φ−






 −






Φ

π
+ ZZEZZZE 2exp

5
1 22  













π

+
π

+






π
++⋅

π
σ= −

24
2

48
25

3
1sin2

1
4
124

5
2
51 12  

 



−

ππ
+−

π
⋅

π
++ 2

1
212

11
2
1

24
55

2
522

1  

.3
1sin122 12
















π
+

π
σ= −  (4.10) 
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Again, the terms such as 

( )( ) ( )( ) ( ) ( )( )ZZZEZZEZZE 2expand,2,2 2222 Φ−ΦΦ  

involved in (4.9) as well as similar terms involved in (4.10) were 
evaluated by appealing to Lemmas 4.6, 4.2, and 4.5 as needed. 

Also, we can evaluate [ ]2
21IE  and [ ] [ ]2

23
2
22 IEIE =  as follows: 

[ ] ( )




















Φ++























−

π
σ=

2
22

1
2exp2 122

1
2
1

2
122

21
ZZEZEZEIE  















Φ−



















Φ










−

π
+

2
2

24exp4 12
1

1
2
1

1
ZZEZZZE  





























−

π
− 4exp2 2

1
1

ZZE  









−

π
⋅

π
+









π
+







π
+++

π
σ= − 1

23
14

23
1

3
1sin2

1
4
122

12 12  

,3
1sin122 12
















π
+

π
σ= −  (4.11) 

and 

[ ] [ ]2
23

2
22 IEIE =  

{ ( )} [ ] { ( )}2
22

2
2
2

2
2

2 554
55exp2

1 ZZEZEZE Φ++−

π

σ=  

{ ( ) ( )} { ( )}2
2
22

2
22 5552

5exp10 ZZEZZZE Φ−Φ−
π

+  

{ ( )}



−

π
− 2

22 2
5exp2

5 ZZE  

( )














π
+

π
+++⋅

π
σ= −

116
5

6
5sin2

1
4
154

5
11
1

2
1 12  
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



−

ππ
+ 2

5
226
510  

( ) .6
5sin2

5
2
11 12









π

+
π

σ= −  (4.12) 

The terms such as 

( )( ) ( ) ( )( ) ( )( )2and,24exp,2 1
2
11

2
111

22
1 ZZEZZZEZZE ΦΦ−Φ  

involved in (4.11) as well as similar terms involved in (4.12) were 
evaluated by appealing to Lemmas 4.6, 4.2, and 4.5 as needed. 

Next, we turn to evaluate [ ],2221IIE  equivalently [ ],2321IIE  and 

[ ].2322IIE  We write 

[ ] [ ]23212221 IIEIIE =  

( )






 −






Φ

π
+























−−


π

σ= 2
2

1
1

2
2

2
12

2
5exp

2
1

2
5

4exp1 ZZZEZZE  

{ ( )} ( )












Φ









−

π
+−

π
− 2

2
1

2
2
21 54exp10

2
5exp

2
1 ZZZEZZE  

{ ( )} ( )






 Φ






Φ+Φ− 2

1
21221 5

2
1052

5 ZZZZEZZZE  

( )





+























−

π
−















Φ− 21

2
1

2
1

21 22
5

4exp2
5

22
5 ZZEZZEZZZE  

( ) 





π
+

π
+

π
+

π
+

π
+

π
σ= −

3524
19

6
1sin2

1
358

33
353

29
3512

11
35
2 12  

( ) ,6
1sin2

1
2
35 12









π

+
π

σ= −  (4.13) 

and 

[ ]2322IIE  
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{ ( ) ( )}2
322

2
3

2
22

2
5exp52

5
2

5
2

5exp2
1 ZZZEZZE −Φ

π
+





























−−

π
σ=  

{ ( )} ( )












Φ









−

π
+−

π
− 3

2
2

3
2
32 52

5exp2
5

2
5exp

22
5 ZZZEZZE  

{ ( )} { ( ) ( )}3232332 55552
5 ZZZZEZZZE ΦΦ+Φ−  

{ ( )} ( )





+























−

π
−Φ− 32

2
2

3232 4
5

2
5exp

22
552

5 ZZEZZEZZZE  

( ) 





π
+

π
+

π
+

π
σ= −

512
43

3
2sin2

56
7

54
1 12  

( ) .3
2sin25 12









π

+
π

σ= −  (4.14) 

Recall that evaluations of terms such as 

( ( ) ( )) ( ( ) ( )),54exp,25exp2 2
2
12

2
211 ZZZEZZZE Φ−−Φ  

( ( )) ( ( ) ( )),52,5 2121221 ZZZZEZZZE ΦΦΦ  

( ( ))2and 121 ZZZE Φ  

involved in (4.13) as well as similar terms involved in (4.14) use Lemmas 
4.6, 4.2, and 4.5 as needed. 

Now, then, we have 

( ) ( ) ,
33

2
2

131211
3

1 σ−







++π=ζ IIIEE  

( ) ( ) ,
33

2
2

232221
3

2 σ−







++π=ζ IIIEE  (4.15) 

and 
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( ) [ ]2321
23

3 27 WWWE ++π=σ+ζ  

[ ( ) ( ) ( )2
321

2
2

2
1 227 WEWWEWEWE +++π=  

]3231 22 WWEWWE ++  

[ ( ) ( )].
3

29327 2
2122

1
σ

σ+π=
WWEWE  (4.16) 

Let us denote 
3

2 1
1

σ
=

WY  and ,
3

2 2
2

σ
=

WY  so that (4.16) leads to 

  ( ) [ ( )] 2
21

23
3 92

9
27 σ−+σπ=ζ YYE  

212
3

1tan13
2
1

3 σ−















π
+

π
+σπ= −  

.1
3

1tan3
1

3
1

6
12





 −






++πσ= −  (4.17) 

The term ( )21YYE  involved in (4.17) was evaluated by appealing to 

Lemma 4.4. Thus, (3.3) follows, that is, the exact variance of ( )3T  is given 
by 

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }.3
3

3
0

3
3

3
2

3
1

3
2

3
1

3
2

3
1

1
3 ζ+ζ+ζ −−−− nnnn  (4.18) 

From (4.18), it also immediately follows that the variance of ( )3T  is 

( ) ( )13
1

9 −+ζ nOn  for large n. 

4.3. Large-sample variance of ( )4T  

We define ( ) ( ),2
1

2
1

432141 XXXXW +−+=  so that ~141 XW  

( ( ) ).4
3,2

1 2
1 σµ−XN  Let ., 11

σ
µ−

=
σ

µ−
=

xzXZ  Thus, we can write 
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( ) ( )[ ]4321
1,4

2,2,41 ,,, XXXxgEI n=  

{ [ ( ) ( ) ]4321 2
1

2
1

23
XXXxE +−+π=  

[ ( ) ( ) ]4231 2
1

2
1 XXXxE +−++  

[ ( ) ( ) ]}3241 2
1

2
1 XXXxE +−++  

[ ( ) ( ) ]4321 2
1

2
1

2 XXXxE +−+π=  

( ) .2
1

3
1

6
1exp2

3
2

2








−






Φ+−

π
σπ= zzzz  (4.19) 

From (4.19), we obtain 

[ ] ( ) ( )



−

π
−






Φ+−

π
σπ= 222222

41 6
1exp2

3
3

1
3
1exp2

3
2 ZZZZZEIE  

( ) 



+






Φ−

π
+






Φ− 222

4
1

3
1

6
1exp6

3
1 ZZZZZZ  

( ) 








π
+

π
+

π
+

π
σπ= −

54
33

54
3

4
1sin2

1
52

33
2

12  

( ) .4
1sin4

1
4
15 12









+σ= −  (4.20) 

Again, the terms 

( )( ) ( )( ) ( ) ( )( )36expand,3,3 2222 ZZZEZZEZZE Φ−ΦΦ  

involved in (4.20) were evaluated by appealing to Lemmas 4.6, 4.2, and 
4.5 as needed.  

Thus, from (4.20), we have 



ESTIMATING A STANDARD DEVIATION  117

( ) .14
1sin4

1
4
15 124

1 







−





+σ=ζ −  (4.21) 

Hence, the asymptotic variance of ( )4T  is ( ) ( )14
1

16 −+ζ nOn  for large n. 

4.4. Large-sample variance of ( )5T  

We begin by defining ( ) ( +=−++= 243432142 3
1,3

1 XWXXXXW  

) ,143 XXX −+  so that ( ( ) )2
1142 9

11,3
1~ σµ−XNXW  and ~143 XW  

( ( ) ).3
1, 2

1 σµ−− XN  Let Z and z be as before in (4.19)-(4.20). We can 

express 

[ ( ) ]432142 3
1 XXXxEI −++=  

[ ( ) ]34213
1 XXXxE −+++  

[ ( ) ]24313
1 XXXxE −+++  

,
11

222exp22 2








−






Φ+








−

π
σ= zzzz  (4.22) 

and 

 [ ( ) ]143243 3
1 xXXXEI −++=  

( ) .322
3exp3

2 2








−Φ+








−

π
σ= zzzz  (4.23) 

Hence, we obtain 

( ) [ ] ,128
3 22

4342
5

1 σ−+π=ζ IIE  (4.24) 
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but we can evaluate the expectation of each requisite term in (4.24) as 
follows: 

 [ ] 







−

π
−






Φ+












−

π
σ= 22exp222

11
411exp22 2

22
2

22
42

ZZZZZEIE  





+






Φ








−

π
+






Φ− 2

2
2

1122exp224
11

4 ZZZZZZ  

 ( ) 







π

+
π

+
π

+
π

σ= −

133
1111

133
11

12
1sin2

13
1122 12  

 ( ) ;12
1sin2

13
1126 12









π

+
π

σ= −  (4.25) 

 [ ] ( ) ( )











−

π
−Φ+−

π
σ= 2

3exp3
22343exp3

2 2
22222

43
ZZZZZEIE  

( ) ( ) 



+Φ








−

π
+Φ− 2

2
2 32

3exp3
2434 ZZZZZZ  

( ) 





π
+

π
+

π
+

π
σ= −

73
3

73
9

4
3sin2

73
2 12  

( ) ;4
3sin2

73
14 12







π
+

π
σ= −  (4.26) 

and 

[ ] 











−






Φ

π
+








−

π
σ= 2

3exp
113

22
11

17exp
3

112 22
2

4342
ZZZZEIIE  

 ( ) 2
22

322exp2222
3exp3

2 ZZZZZZ +Φ







−

π
+








−

π
−  

( ) ( ) 







−

π
−Φ−Φ






Φ+ 22exp22323

11
4

2
22 ZZZZZZZ  
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







Φ−

11
2 2 ZZ  

( ) 







π

+
π

+
π

+
π

+
π

σ= −

456
314

456
3121

4
1sin2

456
3

453
322 12  

( ) .4
1sin2

5
310 12









π

+
π

σ= −  (4.27) 

Recall that evaluations of terms such as 

( )( ) ( )( ) ( ) ( )( )1122expand,11,11 2222 ZZZEZZEZZE Φ−ΦΦ  

involved in (4.25) as well as similar terms involved in (4.26)-(4.27) use 
Lemmas 4.6, 4.2, and 4.5 as needed. 

Next, by combining (4.25)-(4.27), we can express (4.24) as 

 ( ) [ ] 2
4342

2
43

2
42

5
1 2128

3 σ−++π=ζ IIIIE  

( ) ( )




 +++σ= −−

4
3sin2

73
14

12
1sin21432128

3 112  

( ) .14
1sin5

320 1




−




++ −  (4.28) 

Hence, the asymptotic variance of ( )5T  is ( ) ( ).16 15
1

−+ζ nOn  

4.5. Some additional lemmas 

In this subsection, we state and prove some additional results as 
lemmas. These lemmas are needed to fill in some of the details explained 
in Subsections 4.1-4.4. We write ( ) ( ),, yy φΦ  respectively, for the 

distribution function and the probability density function of Y, a standard 
normal random variable, .∞<<∞− y  

Lemma 4.1. For any two arbitrary positive real numbers c and d, we 
have 
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[ ( ) ( )] .
11

sin2
1

4
1

22
1










++π
+=ΦΦ −

dc
cddYcYE  (4.29) 

Proof. Let U, V be i.i.d. N(0, 1) random variables, both independent 
of Y . Then, 

( ) ( ){ }dYVcYUP ≤≤ ∩  

( ) ( )( ) ( )dyyyYdYVcYUP φ=≤≤= ∫ ∩
R

 

( ) ( )( ) ( )dyydyVcyUP φ≤≤= ∫ ∩
R

 

( ) ( ) ( )dyydyVPcyUP φ≤≤= ∫
R

 

( ) ( ) ( )dyydYcY φΦΦ= ∫
R

 

( ) ( )[ ].dYcYE ΦΦ=  (4.30) 

Now, let us denote ,
1

,,
2c

WRdYVXcYUW
+

=−=−=  and 

.
1 2d

XS
+

=  Then, ( ( ) ( ) ),,1,1,0,0~ 22
2 ρ++






 dcN

X
W  where =ρ  

.
11 22 dc

cd
++

 Then, from (4.30), we have 

( ) ( )[ ] ( ) ( ){ }00 ≤−≤−=ΦΦ dYVcYUPdYcYE ∩  

( ) ( ){ }00 ≤≤= XWP ∩  

( ) ( ){ }00 ≤≤= SRP ∩  

{ }.02
1 S

RP=  (4.31) 
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Let us define ,S
RT =  which has its probability density function 

given by 

( )
{( ) ( )}

,,
1

1
22

2
R∈

ρ−+ρ−π

ρ−= t
t

tg  

so that we have 

( ) ( )[ ] ( ) ( ) 212
1

2
102

1

21

s
dsdttgTPdYcYE
+π

===ΦΦ ∫∫
∞

−+

ρ−

ρR

   

[ ( )]


























ρ−

ρ−−π
π

=
π

= −∞=

−=

−

ρ−

ρ 2
11

1
tan22

1tan2
1

21

s
s

s  

  ( ),sin2
1

4
1 1 ρ

π
+= −  (4.32) 

which completes the proof.   

Lemma 4.2. For any arbitrary positive real number c, we have 

( ( )) .2
12 =Φ cYY  

Proof. We observe that 

 [ ( )] ( ) ( )dyycyycYYE φΦ=Φ ∫ 22

R

 

( )[ ] ( ) ( ) ( )dyycyyduucuu φΦ+φΦ−= ∫∫
∞∞

2

0

2

0

1  

( ) ,2

0

duuu φ= ∫
∞

 (4.33) 

which reduces to .2
1   
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Lemma 4.3. Suppose that a random variable W has the student’s t 
distribution with one degree of freedom. Then, for any fixed ,0>c  we 

have 

( ) ( ) ( ) .2
0

dyycycWP φΦ=≤ ∫
∞

 

Proof.  We begin with independent random variables U, V, where 

( )1,0~ NU  and ,~ 2
1χV  so that we may denote .

V
UW =  Now, we 

obtain 

( ) ( ) ( ) dvvcv
v

VcUPcWP 




−Φ

π
=≤=≤ ∫

∞

2exp
2

1

0

 

   ( ) ( ) ( ) ,22exp
2
12

0

2

0

dyycydyycy φΦ=







−

π
Φ= ∫∫

∞∞

 

which proves the result.   

Lemma 4.4. Suppose that a pair of random variables ( )VU ,  has the 

bivariate normal distribution, ( ).2
1,1,1,0,02 −N  Then, we have 

[ ] .
3

1tan13 1








π
+

π
= −UVE  

Proof.  We first observe that 

( )UVE { }[ ]VUEVE=  
































Φ−−








−

π
⋅=

3
2126exp2

2
3 2 VVVVE  

[ ] .
32

1
6exp2

3 2













Φ+−
















−

π
= VVVEVVEVVE (4.34) 



ESTIMATING A STANDARD DEVIATION  123

Clearly, we have 

( ) ,
22

3
3
2exp

2
2

6exp 2

0

2

π
=−

π
=
















− ∫

∞

dvvvVVE  

[ ] .0and =VVE  (4.35) 

Next, we handle the remaining term from (4.34) and write with 0>c  

[ ( )]cVVVE Φ  

( ) ( ) ( ) ( )dvvcvvvdvvcvvv φΦ+φΦ= ∫∫
∞

∞− 0

0

 

( ) ( ) ( ) ( )dvvcvvdvvcvv φΦ+φ−Φ−= ∫∫
∞∞

2

0

2

0

 

( ) ( ) ( )dvvcvvdvvv φΦ+φ−= ∫∫
∞∞

2

0

2

0

2  

( ) ( ) ( )






















φ+φΦ+−= ∫
∞

dvvv
dv
dcv 2

2

0

22
1  

( ) ( ) ( ) ( )dvvcvvcdvvcv φφ+φΦ+−= ∫∫
∞∞

00

222
1  

( )
( )

,
12

1
2c

ccWP
+π

+≤+−=  (4.36) 

where ,~ 1tW  using Lemma 4.3. That is, 

.4
3

3
1tan1

3
1

π
+








π
=











Φ −VVVE  

Now, combining the previous steps (4.34)-(4.36), we complete the proof.   
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Lemma 4.5. For any two arbitrary positive real numbers c and d, we 
have 

( )
( )

.
1122exp

222

22

dcd
cYdcYYE

+++π
=
















−Φ  

Proof.  First, we express ( ) 















−Φ 2exp

22YdcYYE  as follows: 

( ) dyyydcyy





−








−Φ

π∫
∞

∞−

22
2

2
1exp2exp

2
 

( )
( )dyyy

d
cy

d
φ









+
Φ

+
= ∫

∞

∞−
22 11

1  

( )
( ) ( )














φ−φ









+
Φ

+
= ∫∫

∞∞

dyyydyyy
d

cy
d 0

2
0

2 1
2

1
1  

( )
( )( ) ( )














φ−





 φ









+
Φ−

+
= ∫∫

∞∞

dyyydyydy
dy

d
c

d 0
2

0
2 1

2
1

1  

( )









π
−









++π
−

π
−−

+
=

2
1

12222
12

1
1

222 dc
c

d
 

( )
,

121 222 dcd
c

++π+
=  (4.37) 

since we have 

( )dyydy
dy

d
c φ









+
Φ∫

∞

2
0 1

 

( ) ( )dyyy
d

c
d

cyy
d

c
y

y
φ








+
φ

+
−




φ








+
Φ= ∫

∞∞=

=
2

0
202 111

 



ESTIMATING A STANDARD DEVIATION  125

.
12222

1
22 dc

c
++π

−
π

−=  (4.38) 

Now, the proof is complete.   

Lemma 4.6. For any two arbitrary positive real numbers c and d, we 

have 

[ ( ) ( )] 








++π
+=ΦΦ −

22
12

11
sin2

1
4
1

dc
cddYcYYE  

( ) 222 112 dcc
cd

+++π
+  

( )
.

112 222 dcd
cd

+++π
+  

Proof. Again, we first express [ ( ) ( )]dYcYYE ΦΦ2  as follows: 

( ) ( ) ( )dyydYcYy φΦΦ∫
∞

∞−

2  

 ( ) ( ) ( ) ( ) ( ) ( ) dy
dy

yddYcYdyydYcY 2

2φ
ΦΦ+φΦΦ= ∫∫

∞

∞−

∞

∞−

 

 ( ) ( )[ ] ( ) ( ) ( )( )dyyydy
ddYcYdYcYE φΦΦ−ΦΦ= ∫

∞

0

 

( ) ( ) ( )( )dyyydy
ddYcY φ−Φ−Φ− ∫

∞

0

 

( ) ( )[ ] ( ) ( ) ( )( ) ( )( )dyyydy
ddyyydy

ddYcYdYcYE φ−φΦΦ−ΦΦ= ∫∫
∞∞

00

2  
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( ) ( )( ) ( ) ( )( )dyyydy
ddydyyydy

dcy φΦ+φΦ+ ∫∫
∞∞

00

 

( ) ( )[ ] say.,2 4321 IIIIdYcYE ++−−ΦΦ=  (4.39) 

Evaluation of the term ( ) ( )[ ]dYcYE ΦΦ  seen in the last step of (4.39) will 

require Lemma 4.1. Next, we proceed to evaluate 1I  through .4I  

( ) ( ) ( )( )dyyydy
ddYcYI φΦΦ= ∫

∞

0
1  

( ) ( ) ( )] ( ) ( ) ( )dyycydyycyydYcY φφΦ−φΦΦ= ∫
∞

∞

0
0  

( ) ( ) ( )dyydycyyd φφΦ− ∫
∞

0

 

.1211 II +=  (4.40) 

The first term in (4.40) obviously reduces to zero. The term ,11I  and 

similarly ,12I  is simplified as 

( ) ( ) ( )dyycydyycI φφΦ−= ∫
∞

0
11  

( ) ( ) dycydyyc








+−

π
×Φ

π
−= ∫

∞
2

2

0

2
12exp

2
1

2
 

( )
( )dyy

c
dyy

c
c φ









+
Φ

+π
−= ∫

∞

2
0

2

2

112
 

( )
( )( )dyydy

d
c

dy
c

c φ








+
Φ

+π
= ∫

∞

2
0

2

2

112
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( )
( )
















φ








+
Φ

+π
=

∞

022

2

112
y

c
dy

c
c  

( )( )






φ









+
φ

+
− ∫

∞

dyydy
d

c
dy

c
d

2
0

2 11
 

( ) ( )
.

11414 2222 dcc
cd

c
c

+++π
−

+π
−=  (4.41) 

Also, we have 

( )( ) ( ) ( ) ;02

000
2 =φ−φ=φ= ∫∫∫

∞∞∞

dyyydyydyyydy
dI  

( ) ( )( ) ( ) ( )( ) ( ) ( )dyycyycycyydyyydy
dcyI φφ−φΦ=φΦ= ∫∫

∞
∞

∞

0
0

0
3  

( )
( )

;
122

1exp2 2

22

0 c
cdycyyc
+π

−=






 +
−

π
−= ∫

∞

 

( ) ( )( )
( )

.
12 2

0
4

d
ddyyydy

ddyI
+π

−=φΦ= ∫
∞

 (4.42) 

Combining (4.39)-(4.42), we get the desired result.   

5. Some Concluding Comments 

The existing unbiased estimators ( )1T  and ( )2T  for σ  are well-known 

in the literature. Both depended upon U-statistics with symmetric 

kernels of degree two. The new proposed unbiased estimators ( ) ( ),, 43 TT  

and ( )5T  for σ  depend upon U-statistics with symmetric kernels of 

degree three, four, and four, respectively. From this investigation, it 
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becomes clear that ( ) ( ) ( ) ;forand,, 543 σTTT  (i) go practically head-to-

head with ( )1T  and ( ),2T  (ii) ( )4T  beats ( ),2T  and (iii) ( )3T  very nearly 

beats ( ),2T  whether n is small or moderately large. 

Clearly, ( )1T  is more efficient than either ( )2T  or ( )3T  whatever is 

the sample size. That is to be expected since ( )1T  is the MVUE for .σ  

But, if we use ( )3T  in place of ( )2T  (when 55>n ) or instead of ( )1T  

(whatever be n) for estimating ,σ  then one will obviously encounter some 

loss of information, but the loss of efficiency is very small. In other words, 
the kinds of constructions proposed here may be advantageous and 
fruitful in data analyses. 

In a recent unpublished technical report, Mukhopadhyay and 
Chattopadhyay [18] utilized analogous constructions of unbiased 

estimators of ( ),22 Fσ≡σ  in the case of an arbitrary distribution function 

( )..F  In the distribution-free situation, all such unbiased estimators 

ultimately came down to coincide with .2S  This was an interesting and 

striking result in its own right leading to new interpretations of a sample 
variance. While that unpublished technical report has no direct or 
indirect bearing on our present investigation, we have cited it here for 
completeness only. 
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