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Abstract

We consider unbiased estimation of ¢ in a N(u, 62) population. Traditional

unbiased estimators consist of appropriate multiples of both the sample standard
deviation S, that is, T(®) and Gini’s mean difference (GMD), that is, 7). Both
T (1), 72 depend upon U-statistics associated with symmetric kernels of degree
two. In this paper, we develop a new approach of constructing higher-order

unbiased U-statistics T(B), T(4), and T(5) for o based upon symmetric kernels

with degree three, four, and four, respectively. From this investigation, we find

that the new unbiased estimators T(3), T(4), and T(5) for o; (i) go practically
head-to-head with the existing estimators 7® and T(z), (i1) 74 beats T(z),

and (i) 7 (3) very nearly beats T(2), whether n is small or moderately large. In

other words, it is our belief that this new approach appears very promising.
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1. Introduction

The notion of variation has traditionally belonged to the core of
statistics. One measure of variation that clearly stands out is obviously

the sample variance or a standard deviation, which estimates a population

variance o2 or a standard deviation o.

In this paper, we focus on unbiased estimation of the standard

deviation o in a normal population. Suppose that Xj, ..., X, form a
random sample, that is, these are independent and identically distributed

(i.i.d.) random variables following a N(p, o?) distribution. We denote the

_ i .
sample mean, X =n 12;‘:1 X;, and the sample variance,

2 -1\ " )2
S%=(n-1) Eizl(Xi—X),fornZZ.
We suppose that 0 < 6 < o.

From the expression of S?, it is clear that it compares each

observation with the sample average. However, one can equivalently see

an alternative expression of the sample variance as follows:
s (n) 1 2
S2% = @ Z 5 (X - X, ) (1.1)
1<i; <ig<n
From (1.1), it becomes abundantly clear that every X; is compared with
every other X; in defining S2.

The representation in (1.1) is called a U-statistic that belongs to a

class of unbiased estimators (of o), which was introduced by Hoeffding

[10]. The U-statistic (1.1) is associated with a symmetric kernel,
g(xy, x9) = %(xl — x5 )?. Hoeffding’s U-statistic is generally defined in

(2.1) that is based on a suitable symmetric kernel of degree m(< n).
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1.1. A brief literature review

The literature on U-statistics is vast as well as rich. A long journey of
the theory of U-statistics began with the pioneering contributions of
Hoeffding [10, 11]. Numerous books devoted to topics on nonparametric
statistics include some material on U-statistics. We may cite, for example,
Puri and Sen [20], Sen [21], Mukhopadhyay and Solanky [17], Jureckova
and Sen [13], Ghosh et al. [6], Hettmansperger and McKean [9], and
Hollander and Wolfe [12]. One will also find a number of books dedicated
exclusively to theory and practice of U-statistics including Lee [16],
Kowalski and Tu [15], and Korolyuk and Borovskich [14].

In order to estimate o unbiasedly, the minimum variance unbiased

estimator (MVUE) comes to our minds first. It is a suitable multiple of S,
which isdenoted by 7® in (2.4). There is another widely applied unbiased

estimator, T(Z), of o defined in (2.5), which is a suitable multiple of
Gini’s mean difference (GMD). GMD was originally developed by Gini

[7, 8]. Nair [19] constitutes one of the early contributions, which discussed
the role of GMD in estimation theory for a normal distribution as well as
some selected non-normal distributions. Yitzhaki [24] had dealt with
GMD 1in estimating a standard deviation in a non-normal distribution.
Both Downton [5] and D’Agostino [4] worked with an ordered version of

GMD and came up with estimates of ¢ in a normal distribution.

Since the pioneering work of Gini, many statistical scientists,
economists, and others were also drawn into numerous interpretations
and generalizations driven by GMD in various directions. We may cite a
selection of recent contributions by Sen [22], Sen [23], and Arnold [2, 3]

among others.
1.2. An outline of this paper

In this paper, we introduce a basic methodology for constructing
unbiased estimators of o by U-statistics with kernels of degree m > 2 in

a normal distribution. Section 2 begins with some preliminaries,
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illustrations, and motivations behind our approach by constructing new
higher-order unbiased U-statistics T(S), T(4), and 7®) for o with degree
three and four displayed by (2.7), (2.8), and (2.10), respectively. For

brevity, we do not include illustrations with U-statistics of degree beyond

four.

Both 7® from (2.4) and 72 from (2.5) clearly rely upon kernels of

degree two, and they stand as two heavily studied unbiased estimators of

o. We have decided to compare T(B), T(4), T7®) with T and 7® with

the focal point of comparison being T®) because we do not expect to beat
T(l), the MVUE for o. We first compare performances of all five
estimators by using simulations and these preliminary findings are

summarized in Tables 1 and 2. It may not be a bad idea to compare T(S),

T(4), and T®) with other existing unbiased estimators of o, but we

refrain from doing so in order to keep the length of this introductory

discourse on our new approach within reason.

The exact variances of T(l), T(2), and 7®) are then laid out in
(3.1)-(3.3) of Section 3 followed by the comparisons of their efficiencies
(Subsection 3.1). The exact variances of T® and 7O are hard to
evaluate. Hence, large-sample approximations of the variances of 7®

through T7®) are then summarized in Subsection 3.2. Their proofs are
rather involved and hence we have provided some of the key steps of all
derivations in Subsections 4.1-4.4. Some crucial intermediate steps are

put together as Lemmas 4.1-4.6 in Subsection 4.5.

In summary, it is clear from our investigation that three new

unbiased estimators T(B), T(4), and T® for c; (1) go practically head-to-
head with existing estimators 7® and T(z), (i1) T® beats T(z), and

(111) 7®) very nearly beats T(2), whether n is small or moderately large.
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2. Some Preliminaries and Illustrations

Hoeffding’s [10] U-statistic corresponding to a functional 0 = 6(F) is

customarily written as
m) _ (77§ g
U= Unm = (mj ;ng m (Xi17 Xi27 teey le )7 (21)

where Z denotes the summation over all possible combinations of
n,m

indices i, iy, ..., i, such that 1 <i; <iy < ... < i, < n. Here, g(m)(.) is
a symmetric kernel of degree m such that Ep[g(m)(Xl, vy X)) = 0(F),

n > m. We will use a more descriptive notation shortly to streamline a

series of different unbiased estimators of ¢ that we propose.

Let g%l) denote the kernel %(xl - X )2 of degree 2 associated with

S2. In other words, we will streamline our notation by expressing

-1
seot-() ¥ dtmex). e

lﬁil <i2Sn

where U 2’1% happens to be the U-statistic from (2.1) with m = 2. In

n,1,

general, we will denote a U-statistic Ur(Lm];‘;) corresponding to a kernel

gl(gml’p )(xl, ..oy X, ). The “p” in the superscript will indicate that, it is the

p-th proposed estimator of o of a particular kind. The “1,1” in the
subscript of U and g will indicate that we are forming a U-statistic by

comparing each observation with every other observation.

In general, “k, I” in the subscript will indicate that we may compare
the average of each subgroup of size k with the average of each subgroup

of size [, where k, [ are fixed, k + 1 = m. For example, with m = 4, we
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may have either 2 =1,1 =3, equivalently, 2k =3,1=1, or k=1=2,
which would lead to two choices of unbiased estimators of 0 constructed

our way. These will correspond to p = 1, 2, respectively.

Now, since (n —1)S% /6% ~ y2_;, it is easy to see that

-1
EH,G[a,_LlS] = o, where a,, = %T(%) {F(ngl)} ,n>2. (2.3)

Thus, using our scheme of notation, we will write

W = 721 = o715, 2.4)

for the 1st unbiased estimator of o, where the U-statistic corresponding

(2,1)
n,1,1

to o2 employed in the basic construction of S? happens to be U
. : (2,1) 21) .
associated with the kernel g;%"”(x;, x9). However, we note that 7,77/ is

not a U-statistic in itself, but it is the minimum variance unbiased

estimator (MVUE) of o.

Nair [19] had argued that an unbiased estimator constructed from

Gini’s mean difference, namely, U,(12’12% corresponding to the kernel g£212)

(21, x9) = 7n|x1 - x9|, may be used for estimating the population
standard deviation o although, it is slightly less reliable than the
estimator TTEQill) from (2.4) in the case of a normal distribution. He

sy

proposed estimating ¢ with

-1
0 =13 -l - (0] Y UK. o)

lﬁil <i2Sn
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2.1. Motivation behind our construction

In view of the constructions seen in (2.2) and (2.5), let us first

motivate a kernel of degree m = 3, for unbiasedly estimating o. In order

to come up with an unbiased estimator of o, why do we not begin by
comparing %(Xl +X;) with X, for each triplet 1 <i < j<k<n? We

begin with a basic kernel |%(Xi +X;) - X},|, symmetrize it and then

make it unbiased for . This leads to the following kernel:

3,1
gfl,z,)l(xl, X9, X3)

:%{l%(ﬂ +x2)—x3|+|%(x1 +x3)—x2|+|%(x3 +x9) = x1|}. (2.6)

This kernel leads to the following U-statistic of degree 3:
G _ pen) _ gy _ (P (3.1)
T =T =Uy1 = (:J Z &non(Xys Xip, Xip),  @2.7)
1Si1<i2<i3Sn
which estimates ¢ unbiasedly for n > 3.

We may additionally propose the following two U-statistics of degree 4.

Let us define

-1
4 4,1 4,1 n 4,1
T( ) = Tr(L,2,; = U,(l’g’)Q = [ J Z g,(l’Q’)z(Xil’ Xi27 Xi37 XL4 )7
1Si1<i2<i3<i4ﬁn

(2.8
assoclated with the kernel

4,1
gEL,Q’)z(xl’ X9, X3, x4)

ZS%H%(H +x2)—%(x3 +x4)|+|%(x1 +x3)—%(x2 +xy )|
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1 1
+|§(x1 +x4)—§(x2 +x3)|}, (2.9)
and
-1
4,2 4,2) (I 4,2
T() TT’E31)_U7(1, ,% _(4] Z 5},3;(XL17 12’X13’Xi4)5
1Si1<i2<i3<i4£n
(2.10)

associated with the kernel

4,2)
gr(l 3, 1(361, X9, X3, x4)

(x1 + X9 + x3) - x4|+|—(x1 +Xg + Xy ) — X3

sf{l
1 1
+|§(x1 +x3+x4)—x2|+|§(x2 +x3 +%x4)— %7}, (2.11)
for n > 4.

The two U-statistics T\ from (2.8) and 7\%% from (2.10) both

have degree 4 and both estimate ¢ unbiasedly for n > 4. For brevity, we

leave out the details for constructing unbiased estimators of o, more

generally, with U-statistics of degree higher than four.
; ; : (2,1) m(2,2)
Before we get to the topic of variance calculations for Tn 117 Tn i1

T8N, T8, and T4 from (2.4), @5), 2.7, (2.8), and (2.10),

respectively, we first estimated their means and standard deviations
based on 5000 replications via computer simulations under each
configuration of the parent populations. We fixed n = 15, 25, 30, 45, 60,
and 70 and considered random samples from the parent populations
N(5, 100), N(5, 400), and N(5, 900). Tables 1 and 2, respectively,
summarize our findings in the case of small sample sizes, namely, when n

=15, 25, 30, 45 and for medium sample sizes, namely, when n = 60, 70.
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In the case of a specific parent population and sample size n, we
obtained the values of all five 7° S which gave rise to the corresponding
observed t-values from the same set of data during the r-th replication,
r=1, ..., 5000. From such 5000 observed values, we obtained the sample

mean values, ¢ and their estimated standard errors, s(¢). In Tables 1

and 2, we show ¢ and s(¢) values under each estimator.

From Tables 1 and 2, it appears empirically that Var[T(4)] < Var
[T®)] < Var[T®] < Var[T®)] for sample sizes 15, 25, 30, 45, and
Var[T®W] < Var[T®] < Var[T®] < Var[T®)] for sample sizes 60, 70
with few exceptions. Thus, empirically 7®) appears to be the best

estimator among 7@ through 76). In fact, the asymptotic variance of

T®) is also the smallest among the asymptotic variances of T 2) through

T®),

In summary, from these tables, it is abundantly clear to us that the
three new unbiased estimators T(3), T(4), and T®)  for o; (1) go
practically head-to-head with existing estimators 7® and T(Z), (11) 7@

beats T(z), and (i11) 7®) very nearly beats T(Z), whether n 1s small or

moderately large.
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Table 1. Simulated estimates (¢) of standard deviation and their

corresponding standard error s(t)

;@ 7(2) 73 7(4) 7(5)

s@®) 5@ s@®)  s@@W)  s@®)

N(5,100) 15 10.00007 9.99426 9.99462 9.99964 9.99312
1.92789 1.94194 1.93883 1.92751 1.94833

25 9.96733 9.96803 9.96752 9.96675 9.96800

1.45405 1.47153 1.47107 1.45638 1.47970

30 10.00541 9.99965 9.99955 10.00317 9.99815

1.32520 1.33483 1.33312 1.32488 1.33890

45 9.99183 9.99473 9.99487 9.99295 9.99537

1.08470 1.09513 1.09493 1.08657 1.10074

N(5, 400) 15 20.01364 20.00570 20.00462  20.01027  20.00137
3.77603 3.80948 3.80431 3.77453 3.82597

25 20.02791 20.02587 20.02529  20.02726  20.02375

2.90472 2.93433 2.93066 2.90614 2.94621

30 20.04563 20.04681 20.04494 20.04653  20.04365

2.61868 2.64368 2.64282 2.62143 2.65648

45 20.04855 20.04327 20.04279  20.04632  20.04254

2.16611 2.19184 2.18960 2.17070 2.20495

N(5, 900) 15 29.97534 29.98079 29.98705 29.97867  29.98913
5.70799 5.77802 5.77015 5.71273 5.80529

25 30.02527 30.02623 30.02265  30.02438  30.02220

4.43593 4.47374 4.47062 4.43833 4.49376

30 29.96168 29.95199 29.95250  29.95972  29.94997

4.00480 4.04125 4.04104 4.00851 4.06237

45 30.02106 30.02924 30.02785  30.02461  30.02856

3.22111 3.26143 3.26199 3.23030 3.28064
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Table 2. Simulated estimates (¢) of standard deviation and their

corresponding standard error s(t)

;@ 7(2) 7(3) 7(4) 7(5)

s(t_(l) ) 8(5(2) ) 8([(3) ) 8(5(4) ) 8([(5) )

N(5,100) 60 9.99572 9.99712 9.99775 9.99620 9.99844
0.93330 0.94144 0.94150 0.93405 0.94623

70 9.99685 9.99688 9.99721 9.99684 9.99747

0.84230 0.84940 0.84981 0.84292 0.85414

N(5, 400) 60 20.00012 19.99386 19.99382 19.99774 19.99232
1.81046 1.82902 1.82886 1.81339 1.83817

70 19.99676 19.99319 19.99331 19.99494 19.99295

1.71972 1.73420 1.73461 1.72176 1.74287

N(5, 900) 60 30.05758 30.05713 30.05611 30.05751 30.05457
2.75006 2.79284 2.79353 2.76022 2.81196

70 30.02919 30.03386 30.03391 30.03081 30.03533

2.51252 2.54109 2.54258 2.51822 2.55735

3. Exact Variances of T(l), T(2), 7®) and also
Large-Sample Approximations of

the Variances of T Through 7®)

One can easily verify that the exact variance of the unbiased form of

S, namely, 7O from (2.4), is given by

Var[T®] = (a;2 -1)6? with a, = @r(g) {r(”;ljm L)

Nair [19] had shown that the variance of T' 2) defined in (2.5), is given by

Var[T®)] = {%(n +1)+2(n - 2W3 - 2(2n - 3)}o>. (3.2

L
n(n —1)

The exact variance of T(3), defined in (2.7), is given by

-1
Var[T®)] = (g) {3(” ) 3} ¢® 4+ 3(n - 3)cl) + g(g3)o2}, (3.3)
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where we denote

Z;g?’) = 2L7 [24/35 + 2 sinfl(l) +6+2 sinfl(z)

6 3
+8V2 +4 sin_l(%j -1 (3.4)
C(ZS) = 2L7 [2v2 + sinfl(%] +V11 +5 sinfl(%] +2v35
+ 2 sin_l(%) +2v5 +4 sin_l(g)] -1 (3.5)
and
) = [g . % + étanfl(%j _ 1}. (3.6)

A proof of (3.3) is given in the subsection 4.
3.1. Comparing the exact variances

In Figures 1(a) and 1(b), we have presented the curves corresponding
to Var[T®]-Var[T®] vs. n (solid), Var[T'®]- Var[T™ ] vs. n (dashed),
and Var [T(g)] - Var [T(l)] vs. n (dotted) when n = 10(1)60 and n =

40(1)100, respectively. In Figures 2(a) and 2(b), we have additionally
presented the curves corresponding to the efficiency of each estimator
relative to another vs. n when n = 10(1)60 and n = 40(1)100, respectively.

The efficiency of an estimator 70 relative to another estimator 7V is
traditionally quantified by

Var[TV)]

Efficiency, Eff;; = —————.
Var[T®]

3.7
Figures 2(a) and 2(b) plot the curves Effyg (solid), Eff;; (dashed), and
Eff;3 (dotted) vs. n when n = 10(1)60 and n = 40(1)100, respectively. We

have deliberately kept a small overlap of n-values when we move from
Figure (a) to Figure (b) in order to be able to pick up any visible
differences when n = 40(1)60.
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Figure 1. Differences of variances from (3.1)-(3.3): Var [T(S)] — Var [T(Z)]
(solid), Var[T® - Var[TW] (dashed), and Var[T®]-Var[T®] (dotted)
vs. n; (a) n=10(1)60 and (b) n = 40(1)100.
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Figure 2. Efficiencies from (3.7): Effgg (solid), Eff;5 (dashed), and Eff;s
(dotted) vs. n; (a) n = 10(1)60 and (b) n = 40(1)100.
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From the Figures 1(a), 1(b), 2(a), and 2(b), we note that for a
reasonably small sample size (that is, when n < 55), the estimator 7®)
is more efficient than T@). For a sample of size exceeding 55, the

3)'

estimator 72 is more efficient than 7®). One may note that when

n=23, 7@ and 7® have equal variances.

Clearly, the unbiased version of the sample standard deviation,
namely, T(l), is more efficient than either T3 or T®) whatever is the
sample size. Thus, if we use 76) in place of 7@ (when n > 55) or
instead of 7™ (whatever be n) for estimating o, then one will obviously
encounter some loss of information. From Figures 2(a) and 2(b), we
surmise that the loss of efficiency, while using T 3) in place of 7@ when
n > 55 will not exceed 1.5 x 10™° whatever may be n, whereas the loss of
efficiency for using T®) instead of TW will not exceed 0.025 whatever is
n. Thus, one may not lose much information, if one uses T7®) instead of
7@ or 7O,

3.2. Large-sample comparisons of the variances of estimators

In the Section 4, we have provided large-sample approximations for

the variances of the estimators 7'!) through 76). In what follows, we

summarize these large-sample approximations of Var[T(l)] through

Var[T®)].
02 02 (52
Var[TW]~ 0.5°; Var [7®)]~ 0.5112092 % Var[T®)]~ 05118784 °—;

2 2
Var[TW] ~ 0.502654407; and Var[T®)] ~ 0.5172479%. (3.8)

As expected, T® is most efficient among our five competitive

unbiased estimators of . But, for large sample sizes, 7@ through 7®)
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are not terribly worse than T(l), whereas (1) 7®) clearly stands out
especially since it can beat T(Z), and (i1) 76) performs nearly head-to-

head with 7®).
4. Proofs and Derivations

In this section, we provide some of the major derivations. In
Subsections 4.1-4.4, we have repeatedly utilized Lemmas 4.1-4.6, which
have been kept out of the way by combining all of them as well as their

proofs in Subsection 4.5.
4.1. Large-sample variance of 7 from (3.8)

The exact expression of the variance of 7@ in (3.1) is easy to verify.
From Abramowitz and Stegun ([1], 6.1.47), first we know that

b-a F(Z+a)~

T(z +b) 1*21_2(a‘b)(a+b—1)+0(2’2). (4.1)

Now, we rewrite Var [T(l)] from (3.1) as
2 2
@2 -0 = {2 (") ({3 e

= 21—ncsz +0(n2),

in view of (4.1).
4.2. Exact variance of T®): Proof of (3.3)

Let us first consider a general U-statistic U defined by (2.1). Then,
using Hoeffding’s [10] projection method, the variance of U will be given
by

Varo] - (3] (7) e

c=1
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where

Co = Elg™X (X, 0, X; WXy = %0 oo Xy, = % |- 02, (42)

414
forc=1,2 ..., m.

Next, in view of (2.7), we have

@ - () [ XXy Xp+ Xi o
T (3) 2 27{‘ 5 X, |+ 3 X;
1<i<j<k<n
X, +X
So, we let W) :M—X‘g,w2 zw_)(z, and W = X ;X3

-X; with W; ~ N(O, %cz), for i =1, 2, 3. But, we know the following

conditional distributions:

Wi|X, ~ N(X12_ " 202) and W;| X5 ~ N(@ gozj. (4.4)

Thus, utilizing (4.4), we can claim

iy = T = BIWI1%] = of 2 o[- 15 22 )+ 20 . 2) - 2,
Ly = E[|Ws]|X;] = c{% exp(-22) + 220 (V2Z) - Z}, (4.5)

where Z = (X; —pn)/o.
Also, we know the following conditional distributions:

X1+X2

X1—2X3+].l 1 2)
2 —_—, — O .

—_ GQJ and Wl|X1,X3~N( 5 '3

WXy, Xy ~ N(
(4.6)

Utilizing (4.6), we obtain
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Iy = E[[W][ Xy, X5]
2 Z? (le VA X, + Xy - 21
=ol|Zexp| - Ll |+ V2zo| L |- Ll gz - 21T A2 T A
{\f p( 4] B R V20
Iy = E[[Wa|| X7, X5 ]
1 573 NGV A X; - 2X, + 1
=0 exp| - 22 | + V5 Zo® (V52 ) - , Ly = —— 2
{m [ 9 J 2 ( 2) 9 2 «/50

Iy3 = E[|Ws][ X7, X5]

1 5Z32 V574 Xy —2X; +1
= 6{——exp| - —2 | + V56230 (V525 ) -  Zg =22 1T E
{m [ 2] 3 ( 3) 2 3 \/gc

4.7

We also observe that E[I%]= E[I%]= E[l;;I;3] and we can

evaluate this term as follows:

| 2 rfon|- £+ Loty {0 )} wfaref £
e fren]-22) - ofElzon{ -2 o Z)]

02(5 é+l+[l+Lsinl(1]+ /5 }—l+ 5\6}

"0 2 VT T4 T |4 2 6) end7 | 27 Gl
2 \/% L .1 l
=0 ( o + 5 Sin (GD (4.8)

The terms such as
E(z20%(z /V5)). E(220(2 /V5)), and E{Z exp(-22 /10)0 (2 /5)}

involved in (4.8) were evaluated by appealing to Lemmas 4.6, 4.2, and 4.5.
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Next, we turn to evaluate E[I%] and E[I1;13](= E[I;5]15]). We

have

E[I%] = 02& Elexp(- 222)) + 4E (2202 (V22)) - 4B (220 (V22))

+E(2%)- lﬁ E(Z exp(-22))+ % E(Z exp(- 22)o (@Z))}

:02[ 1 +4(l+Lsin’1(z)+i)—l+i ;}
w5 \4 2n 3) 3ml5 Jr 3v5n

=62 [ﬁ + 2 sin! (ED, 4.9

and

E[I1 3] = E[L513]
{ (E( ( 11Z2D+2E(Z%(%)q>(¢§2))
_\/gE(Zexp£— fg}j ZJ_E(ZeXp( 72))+ L S E(2%)
+2\/2?E(Z exp(— Z-J@(J_Z)j (qun(%j)

+LE(Z<D(%) exp(— Z2 )) - E(ZZQD(\/EZ))}

2 l\ﬁﬁm 1,1 . a1y, 52 V2
B V2 4 4 2n 3) 48n  24n
L1655 1.1 1 _l}

2 2n 94Jn 2 Jmi12v2n 2

- o2 {% ; % sin~! %ﬂ (4.10)
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Again, the terms such as
E(2202(v22)), E(2%0(V2Z)), and E(Z exp(-22)o(V22))

involved in (4.9) as well as similar terms involved in (4.10) were

evaluated by appealing to Lemmas 4.6, 4.2, and 4.5 as needed.
Also, we can evaluate E[I% ] and E[I%] = E[I3;] as follows:

2

1=l - 5] e st )
el p(R) (3

fenl 7

:02|:ﬂ+l+2{l+isin_l(lj+L}+i. 1 _1:|

T 2 4 2n 3) 3n2) n 3V2n

_ 02{_2@ . lsin_l(lﬂ, (4.11)
b e 3

and

E[13] = E[I35]

- 02[%15{ exp(=522)} + %E[Z% 1+ 5E {Z20%(\52Z,))

" \/g E{Zy exp(-2 23)0 (52} - 5E{Z30(52, )
_ \/gE{ZQ exp(—gzg )}}

262 L.L+é+5{l+Lsinl(é)+L}
27[ \/H 4 4 27'C 6 675»\/H
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10 V5 _é}
T 6v22n 2
2 V11 5 -1, 5
= [275 + 5o sin (6 } (4.12)

The terms such as
E(z20%(2, | ¥2)), E(2, exp(-22 | 4)0(2, / ¥2)), and E(z20(z, /42))

involved in (4.11) as well as similar terms involved in (4.12) were

evaluated by appealing to Lemmas 4.6, 4.2, and 4.5 as needed.

Next, we turn to evaluate E[I9l59], equivalently E[I5;155], and
E[122123 ] We write

E[Iy1159] = E[I9153]
2 2
<o Lefes(- 2 - m{mo( D Jon- S )]

%E{Zz exp —-J@(J—ZQ )}

- 23/5
- \EE (2,290 (V5Zy)} + V10E {zleqJ(%ch(«/gZz )}

el B} ol - minn]

2|: 2 N 11 4 29 4 33 +1 _1(_) :|
J35n  12nv35  3nV35 835 2m 247‘(.\/_

0 s ().

+ —SsIn

on T on (4.13)

and

E[Iy9155]
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2 2
21_11 E{exp(— 523 _ %J} + %E{ZZ(D (x/gZQ ) exp(—g Zéz )}

2
- % E{Z, exp(—ng )} + \/gE{Zg exp[— %J@(@Zg) )}
- g E{ZyZ5® (V523 )} + BE (Z5 750 (V525 ) (V523 )}

2
- g E{ZyZ5® (525} - % E{Z3 exp[— %}} N %E(Z2Z3 )}

202[4:\/3 an+_s _1(_) 12?/5}

cz{g +%sin*1(§ )}. (4.14)

Recall that evaluations of terms such as
E(Z®(Zy | V2)exp(-5Z3 | 2)), E(Zy exp(~Z7 | 4)0(V5Zy)),
E(Z1Z5®(V525)), E(Z1Zo®(Z, | V2)®(V5Z3)),
and E(Z1Zo®(Z, /2))

involved in (4.13) as well as similar terms involved in (4.14) use Lemmas
4.6, 4.2, and 4.5 as needed.

Now, then, we have

2
C(g) {% E(Ly + Lig + I3 )} -

g(?’)—EﬁE(z +Igg + 1 )2—02 (4.15)
2 3\/§ 21 22 23 s .

and
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¢+ 0% = ZEBW|+ Wy + Wy
_ T 2 2 2
T AB(W2)+ B(WE )+ 2B|WWo| + E(WF)

+ 2E|VVlW3| + 2E|W2W3|]

2 [BEW) + 96°E(| AV 2W1W2 D (4.16)
Vaw, Vaw.

2
, so that (4.16) leads to
o3

Let us denote Y; =

and Yy =

oV3

9
&) = %02[5 +9E(V1Y2])] -

_r o[l M3 1 1Y] o
—30{2+ - +7ttan (\/gﬂ o

2[6 - L L tan- 1(%}1] (4.17)

The term E(]Y;Y3|) involved in (4.17) was evaluated by appealing to

Lemma 4.4. Thus, (3.3) follows, that is, the exact variance of 76) is given
by

BRI + G + G e @19

From (4.18), it also immediately follows that the variance of 76 s

%C?) +0(n™1) for large n.

4.3. Large-sample variance of 7

We define W, = %(X1 +X2)—%(X3 +X,), so that Wy|X; ~

N(%(Xl —H),%Gg ). Let Z = ch_ H , 2 = xl; “. Thus, we can write
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I41 = E[gg,,%’zl,)z(xl’ X2’ X3’ X4 )]
f {E[| Ly +X2)——(X3 +Xy)]

B 5 (01 + X3) - 5 (X + X, )]

B[ 5 (0 + X,) -3 (X2 + X))

- \/gEH%(xl +X2)—%(X3 + Xy )]

= \/gc[\/gexp(—%zZ)Jrz@(%z)—%z}. (4.19)

From (4.19), we obtain

3 1 1 3 1
E[I}]1=262E| 2 exp(- = Z2) + Z20% —=Z | - | Z exp(- = 2>
[li]=50 [%exp( 3Z27)+ 5 ,/% exp(-&27)

—Z%(% j \/EZexp(——Z2)(D( j+ 22}
3

2302{ 3 , 1 ,1(_) V3 3\/_}
2° |95 2m 4n5  4n5
Vis 1. 4,1
= 02|:T + Zsul l(z ):| (420)

Again, the terms
E(z20%(z /V3)), E(220(2 /V3)), and E(Z exp(-22 | 6)0 (2 / 3))

involved in (4.20) were evaluated by appealing to Lemmas 4.6, 4.2, and
4.5 as needed.

Thus, from (4.20), we have
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CYL) = 02[@ + isin_l(%j - 1}. (4.21)

Hence, the asymptotic variance of 7@ s % Q£4) + O(n_l) for large n.
4.4. Large-sample variance of 76)
We begin by defining W,y = %(X1 Xyt Xg) - Xy, Wyg = %(X2 N
1 11 o
X3 + X4)— X]_, so that W42|X1 ~ N(g(Xl - },L), 30' ) and W43|X1 ~

N(-(X; —n), %02). Let Z and z be as before in (4.19)-(4.20). We can

express
1
Iy = E[|§(x1 + Xo + X3) - Xy4l]
1
+E[|§(x1 + Xy + X, ) - X;5]
1
+E[|§(x1 + X5+ X, ) - Xs]
=c ‘/2 exp —i +22<D(i)—2 (4.22)
T 22 J11 ’
and

1
I3 = E[|§(X2 + X3+ Xy ) - x]]

= c{\/g exp(— %J + 220 (V/3z) - z}. (4.23)

Hence, we obtain

3
oY = e Bl + Iy F - 0%, (4.24)
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but we can evaluate the expectation of each requisite term in (4.24) as

follows:

_ {22\/_ s 2gn (L) V11 +11\/H}
IR 12 3m13  3nv13
26J11 2 . 4,1
= {n\/_ Zsin 1(§ } (4.25)

2 254 2 2 2.9 2 372
E[I%3] = 6®E| = exp(- 32%) + 4Z*0*(V/3Z) - 2 =7 exp| - 2

3n 2

~4Z%0(V3Z) + 4\/372 exp(— %)@(@Z) + 22}

2 .. 1,3 9 3
+—sin (4)+ + }

9| 2
o2l 2
[37&/7 37 3nVT

B 2[3m/_+281 _1(_)} 20

and

E[l49143]= GZE{Z‘/H [_ 17Z2J W2

exp + ZCD( Z jexp —ﬁ
w3 11 V3n Vi1 2
1’ —7 exp —ﬁ 2‘/2Zexp —Z—2 ®(V3Z)+ 22

2 T 22

L4720 (i)m(«/_z) 2220 (J/37) - Zexp(—g—;]
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_oz2p( 2_

22%0( £ |

_ Gz[ 22V3 3 2 2an (L, 121V3 14@}
3nv45  6mV45 T 4 6145 6n45

) 1043 2 . 1,1

=0 [m'ﬁ‘zsln (Z):| (427)

Recall that evaluations of terms such as
E(z20%(z /v11)), E(2%0(z / V11)), and E(Z exp(- 22 / 22)0 (2 / v11))

involved in (4.25) as well as similar terms involved in (4.26)-(4.27) use
Lemmas 4.6, 4.2, and 4.5 as needed.

Next, by combining (4.25)-(4.27), we can express (4.24) as

3
C§5) = éE[Izz + 173 + 21 49143] - o

- 1 s —1
_ o2l 3 24143 + 2 1,y,14 92 3
c ( 3 sin” (=) Wi sin (=)

+ 20\/§ + sin~( i )j - 1}. (4.28)

Hence, the asymptotic variance of 7'® is % Cg‘r’) +0(nh).

4.5. Some additional lemmas

In this subsection, we state and prove some additional results as
lemmas. These lemmas are needed to fill in some of the details explained

in Subsections 4.1-4.4. We write ®(y), ¢(y), respectively, for the

distribution function and the probability density function of Y, a standard

normal random variable, —o0 < y < .

Lemma 4.1. For any two arbitrary positive real numbers ¢ and d, we

have
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1 1 . 1 cd
Elo(cY)D(dY)]| ==+ — . (4.29)
(v ()] 4+2n81n (\/1+02\/1+d2]

Proof. Let U, V be i.1.d. N(0, 1) random variables, both independent
of Y. Then,

P{U < cY)N(V < dY)}

- J.P((U <cY)N(V <dY)|Y = )o(y)dy
R

- j P(U < ey)N(V < dy)é(y)dy
R

- j P(U < ey)P(V < dy)o(y)dy
R

- [oer)o@r)opay
R
= E[®(cY)D(dY))]. (4.30)
Now, let us denote W =U-¢Y, X =V -dY,R = w , and
1+ c2
S = X Then, (Wj ~ Ng(0, 0, (1+¢?), (1 +d?), p), where p =
V1 + d? X
cd

. Then, from (4.30), we have

\/1+c2\/1+d2
E[®(cY)®(dY)] = P{U -cY <0)N(V -dY < 0)}
=P{(W<0)N(X <0)}

=P{(R<0)N(S <0)}

>0}. (4.31)
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Let us define T = %, which has its probability density function

given by

V1- p2

Y ARS
m{(t - p)* +(1-p%))

g(t) =

so that we have

E[®(cY)D(dY)] = %P(T >0) =

o=

[eoa-L |
2n 1+s?
R+ P

]. — S=00 1 T —
= E[tan 1(8)]3ﬁ = 2—n{§—tan {— x/li)?ﬂ

1-p
1,1
=7t g, sin (), (4.32)
which completes the proof. O

Lemma 4.2. For any arbitrary positive real number ¢, we have
2 1
(Y@ (cY)) = 3
Proof. We observe that

E[Y*0 ()] = [ 50 ()o(y)dy
R

o0

_ j w?[1- (cu)d(u)du + | 2@ (cy)d(y)dy
0 0

0

= J.uzcb(u)du, (4.33)

0

which reduces to % O
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Lemma 4.3. Suppose that a random variable W has the student’s t

distribution with one degree of freedom. Then, for any fixed ¢ > 0, we

have
PW < ) = 2[ @ (cy)o(y)dy.
0

Proof. We begin with independent random variables U, V, where

U~ N(@O,1) and V ~ x%, so that we may denote W = i Now, we

v

obtain

PW <¢)= P(U < C\/V) = \/2_1\/_ I@(cv)exp(— %)dv
o o

= 2E|;<D(cy) x/;_n eXp[— %]dy = 2£<D(cy)¢(y)dy,

which proves the result. O
Lemma 4.4. Suppose that a pair of random variables (U, V) has the

bivariate normal distribution, No(0, 0, 1,1, — % ). Then, we have

E[|UV]|] - €+%tan_1(%}

Proof. We first observe that

E(UV]) = E[VIE{U||V]]

- £ B (- |- S 120 )
_ \/%E {|V| exp[— V?QH - E[SVV]]+ E[V|V|® (%ﬂ (4.34)
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Clearly, we have

E||V|exp —V—2 =ijvexp(—gv2)dv= ,
6 Var J 3 221

and E[V|V]] = 0. (4.35)

Next, we handle the remaining term from (4.34) and write with ¢ > 0

EIVIVI® (V)
0 o0

= J. v[u| @ (cv)d(v)dv + Jv|v|<b(cv)¢(v)dv
—o0 0

= —Jvz® (= cv)d(v)dv + Iv2®(cv)¢(v)dv
0 0

0

= —Jv2¢(v)dv + 2Tv2®(cv)¢(v)dv
0

0

< 2
S 2Dcp(cu){j_2 () + ¢(v)}dv]
0 1%

[ee]

= _% + ZJ.G)(cv)d)(v)dv + ZCJ.U(I)(CU)(I)(U)dU
0

0

- L PW o)+ —S (4.36)
2 n(l+c”)

where W ~ ¢;, using Lemma 4.3. That is,

E[V|V|<D(%ﬂ - %tan_l(%) " 4£i.

Now, combining the previous steps (4.34)-(4.36), we complete the proof. []
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Lemma 4.5. For any two arbitrary positive real numbers ¢ and d, we

have

2y 2
E|:Y(D(CY) exp(— d ZY

ﬂ: \/%(1+d2)\/1+02+d2 .

2,2
y H as follows:

Proof. First, we express E{YCD (cY) exp[— 3

0

2
y d® o ( 1 2)
D (cy)exp| — — exp| — = d
__[0 l_zn (y) p( 9 Yy J p 23’ Y

yd{
(1+d2) '[o 1+d2

" d) ZJyCD(m yJ¢(y)dy _([ycb(y)dy]

0

_ m _— ZIQD[ ¢ = y] (diy (¢(y)))dy - Tytb(y)dy]

0

1

~ N c !
S (+d?)| 2{ 2v2n 2«/%\/1+c2+d2} m}

(4.37)

Cc
(1+d?>W2nV1+c? +d? ’

since we have

K c d
-([(D{W de_y o(y)dy

y=x o9}
- @ B c c d
(\/1 +d? Jd)(y)L:o V1 + a2 ;[(I)[\/l +d? yj(b(y) g
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C

1
= — - . (4.38)
2N2m 2427&1 +c2 +d?
Now, the proof is complete. O

Lemma 4.6. For any two arbitrary positive real numbers ¢ and d, we

have

E[YQQD(CY)‘D(dY)]:%+21_nsm_l[\/1 Z‘le dZJ
+c +

cd
+
21(1 + 2 W1 + ¢2 + d?

cd
+ .
2n(1 + d? W1+ 2 + d?

Proof. Again, we first express E[Y2®(cY)®(dY)] as follows:

[oe}

[ yoeno@nemay

—00

o0 0 2
- [oero@owmay+ | CD(CY)CD(dY)—dd(I;(Qy) dy

- E[0()0(@Y)]- [@(cV)0(@y) (s (x)dy
0

~foreror dY)d%<y¢<y>>dy
0

- E[0(e¥)0(@Y)] - 2[ (V)0 () - (0 ()dy - [ 5 (o ()dy
0 0
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+ J GIJ(CJV)i (yo(y))dy + _[CD(dy)i (o (y))dy
0 dy 0 dy

= E[@(cY)®(dY)] - 2I; - Iy + I5 + I4, say. (4.39)

Evaluation of the term E[®(cY)®(dY)] seen in the last step of (4.39) will

require Lemma 4.1. Next, we proceed to evaluate I; through I,.

j ! @(cY)@(dY)diy(m(y»dy

[>e}

= O (cY)D(dY)yd(»)]y - cjycb (dy)(cy)d(v)dy
0

- d_[ Y@ (cy)o(dy)d(y)dy
0

= I]_]_ + 112. (440)

The first term in (4.40) obviously reduces to zero. The term I;;, and

similarly I, is simplified as

I = —CJydD(dy)¢(cy)¢(y)dy
0

= \/_J‘yd)(dy)x exp(——2(1+c ))dy

0 dy
\/_(1+ 2)'([)@( 1+c2

th(y)dy

0 ) i
x/_(1+c ’([ [1+c jdy(d)(y))dy
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B (CD( @ ]¢(y)]oo
m(l + 02) V1 +¢? 0

= f . !4{ Tiyg Jdiy@(y»dy]

= ¢ cd . (4.41)

an(1+c?) 4n(1 + ¢? )\/1 +c? +d?

Also, we have

Iy =

Ot—— 8

diy<y¢<y>)dy - i d(y)dy - ! y26(y)dy = 0;

I3 = .([ <1>(cy)diy(y¢(y))dy = (Y@ (cy)o(¥))o - 0£y¢(cy)¢(y)dy

¢ 7 y2(1+c?) c
=g Jyem| -y = -
T 2n(1 +¢*)

T d d
1, = [0(dy) 2 (8()dy = - — . (4.42)
J Y 2n(1+ d”)
Combining (4.39)-(4.42), we get the desired result. O

5. Some Concluding Comments

The existing unbiased estimators T® and 7@ for o are well-known

in the literature. Both depended upon U-statistics with symmetric

kernels of degree two. The new proposed unbiased estimators T(3), T(4),

and T® for o depend upon U-statistics with symmetric kernels of

degree three, four, and four, respectively. From this investigation, it
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becomes clear that T(B), T(4), and T®) for o; (1) go practically head-to-
head with T® and 7®, (i) T® beats 7@, and (ii) T® very nearly

beats T(Z), whether n is small or moderately large.

Clearly, T® is more efficient than either 73 or T®) whatever is
the sample size. That i1s to be expected since 7@ is the MVUE for o.

But, if we use 76 in place of 7@ (when n > 55) or instead of 7®
(whatever be n) for estimating o, then one will obviously encounter some
loss of information, but the loss of efficiency is very small. In other words,
the kinds of constructions proposed here may be advantageous and

fruitful in data analyses.

In a recent unpublished technical report, Mukhopadhyay and

Chattopadhyay [18] wutilized analogous constructions of unbiased
estimators of 62 = o2(F ), in the case of an arbitrary distribution function

F(). In the distribution-free situation, all such unbiased estimators

ultimately came down to coincide with S2. This was an interesting and
striking result in its own right leading to new interpretations of a sample
variance. While that unpublished technical report has no direct or
indirect bearing on our present investigation, we have cited it here for

completeness only.
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